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Mixed convection from a sphere at small 
Reynolds and Grashof numbers 
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Consideration is given to the effects of gravity which arise when a heated sphere, 
maintained at a steady uniform temperature, is located in a vertical uniform 
stream. Restricting analysis to a medium of unit Prandtl number (a), the method 
of matched asymptotic expansions is employed in obtaining solutions for the 
velocity, temperature and pressure fields in the limit: G = o(R2), R J  0 (G 
and R being, respectively, the Grashof and Reynolds numbers). Based on these 
results, conjectures are formed about the corresponding pure natural convection 
problem. 

1. Preliminaries : the natural convection problem 
In the present section, we review the small Grashof number natural con- 

vection problem in order to indicate the attendant difficulties and to elicit 
the similarities with the (analytically simpler) mixed convection problem ($2). 
Although of interest in its own right, the mixed convection phenomenon may 
also be used to  infer the behaviour of the natural convection flow; such in- 
ferences form the basis of $3. 

1.1. The governing equations 

Solutions are sought for the flow field arising from a sphere of radius a and tem- 
perature t, which is located in an unbounded medium in the presence of gravity, 
g (acting in the negative x-direction). The undisturbed fluid, at  rest with respect 
to the sphere, is taken to be of uniform temperature, t,, and density, pm. It is 
further assumed that the fluid is of constant transport properties, that viscous 
dissipation is negligible and that the fluid density is uniform except as it relates 
to the buoyancy effect (the density then taken to be only a function of tempera- 
ture), The resulting governing equations are: 

V . 8  = 0,  (1) 

($.v)$ = -p ;1~@+v~2~+g/@i , ,  (2) 

(G. V)? = aV@, (3) 

where 6, f', @ are, respectively, the fluid velocity, the temperature difference 
( = t - t,) and the pressure arising from the fluid motion, Y the kinematic vis- 
cosity, p the coefficient of thermal expansion and a the thermal diffusivity. 
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The boundary conditions are that 8 = 0, 9 = t, - t ,  a t  P = a (P being the dimen- 
sional radial co-ordinate) and that 8 be bounded and 5? vanish as P-tco (more 
precisely, as P --f 00, 8 should vanish 'almost everywhere', i.e. everywhere except 
in the narrow wake region above the body, wherein 6 should be bounded). 

1.2. The inner region 

Employing a regular perturbation scheme for small values of the Grashof 
number, G E gP(t,, - t ,  )a3/v2, one has: 

where r = ?/a, I9 isithe angular co-ordinate measured from the positive x-axis 
and 

In  non-dimensional form, the governing equations now become: 

v .v* = 0, (7 )  

( 8 )  

(9) 

where (T = v/a, the Prandtl number. The appropriate boundary conditions are: 
v*(l,O;G) = 0,  T*(l,O;G) = 1 ,  and v* bounded, T* N 0 as r i m .  

If G = 0, the problem reduces to that of pure conduction from an isothermal 
heated sphere and results in 

(v*. V)v* = - Vp* + V2v* + GT*i,, 

(v* . V)T* = ( 1/(T)V2T*, 

T* = l / r ,  v* = 0 = p*.  

Hence, in expansion (5) above, 

@(G)T,*(r,O) = l/r.  (10) 

From ( 5 )  and (10) we see that T* is 0(1), indicating that the buoyancy force 
in (8) is O(r2). It is therefore natural to set S:(G) = G, resulting in 

V2vf - Vpf = - ( l/r)ix. (11) 

Expressed in terms of the stream function, $:(r, O), where 

sin2 0 
r 

the curl of (1 1) becomes D2$f = -, 

where 
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Subject to the conditions that @ be zero along 8 = O,n and have a double zero 
at r = 1, the general solution to (12) is 

00 

1CI.T = - 9r3 sin2 8 + {An[rm+l - (n +- +)r2-n + (n - +)r-n] 
1 

+Bm[rn+3- (n++)r2-n+ (n+g)r-n]}Gn(cos8), (13) 

where G, is the Gegenbauer polynomial defined by 

Pn being the Legendre polynomial of degree n. Applying the principle of mini- 
mum singularity (cf. Van Dyke 1964), it follows that only A ,  and A ,  may be 
non-zero. 

One notes that, as r+  co, the O(r3)  behaviour of 1C.T corresponds to an O(r )  be- 
haviour in v:, thus precluding satisfaction of the boundary condition at  infinity. 
This clearly indicates the inadequacy of the regular perturbation expansion 
procedure. As in the corresponding small Reynolds number problem, the con- 
vection effect must be considered in the distant region. That is, there exists 
an outer region in which the convective, diffusive and buoyant effects are of the 
same order of magnitude. 

1.3. The outer region 

Denoting the characteristic length and speed in the outer region by L and 
U,, the requirement that the convective and diffusive effects be of the same order 
results in L = ulU,. In order to determine U,, one notes from (4) and the O(r )  
behaviour of v? (for large r )  that, in the outer region, 

V V L l J  1.' 

a a a a UBa' 
UB-181=-G.0(r)-  - G - = - G -  

(Alternatively, this result is obtainable by equating the inertial and buoyant 
forces, noting that 9 N (t,-t,).O(a/L) in the outer region.) Hence, with 
p* = P/L = rG*, the appropriate asymptotic expansions in the outer region 
are : 

!P = (t,-tm)F*(p*,O;G) N (t,-t,) @z(G)9;( /1*,8) ,  (16) 
n = l  

@ = PmgP(tw-tm)ag*(p*,8;G) N pmgP(t,-tt,)a E A2(Q')g2(p*,4, (17) 
n = l  

where, based upon the above considerations, AT (G) = O( 1) and <DT (G) = O(G5). 
In particular, setting AT (a) = 1 and @T (G) = G,, the governing equations for 
VT, 9:, 9: become : v.v; = 0, (W 

(V;. V)VT = - V9: + V2Vf + 9 T  i,, 

(VT. V ) 9 y  = ( l / a ) V V f .  
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The boundary conditions are that V: be bounded and F: vanish as p+m; 
matching considerations with respect to T$ and +: require that F: N l /p *  
as p* -+ 0 and that the O(p*3) behaviour of @: include the term - 

It is at this point that the small Grashof number problem distinguishes 
itself from the small Reynolds number forced convection problem. I n  the latter, 
the momentum and energy equations in the outer region are uncoupled 
and linear, the convective operator being linearized about the uniform stream 
velocity; in the former, as evidenced by (18)-(ZO), the momentum and energy 
equations are coupled and non-linear in the outer region. 

Although exact solutions to (18)-(20) are not forthcoming, the behaviour of 
such solutions for p* large can be obtained by means of co-ordinate perturbation 
expansions. Such expansions usually regard the sphere as a point source of 
heat, Q, and are not limited to small G, requiring rather that .3 $ v/U*, U* 
being the characteristic speed. Employing dimensional and energy conservation 
considerations, one readily finds that U* = J(g/3Q/k) ,  k being the thermal con- 
ductivity of the fluid. For small G, however, Q is essentially due to pure conduc- 
tion, i.e. Q z 47rak(tw - t ,  ), indicating that then the characteristic speed is, 
indeed, J(g/?(tw - t,)a). 

In terms of the present problem, the well-known co-ordinate perturbation 
solutions (cf. Yih 1953) indicate a paraboloidal wake region: 0 = O(p*-i)  as 
p*+ co, in which V,* = O(l ) ,  F: = O ( l / p * ) .  Towards the edge of the wake, 
VT N - A(o)iG./&*(a* being the cylindrical radial co-ordinate, p* sin 8, and A(o)  
a positive constant (for given c)) with the vorticity and temperature vanishing 
algebraically. In particular, for the case cr = 1, Yih (1953) obtained a closed- 
form solution for the wake which, in terms of the present analysis, is expressible 
as 

sin2 8. 

VT N - (1 + " y*2)2 lX7 (q*'fixed, p* + CO), (21) 

where 

1.4. Previous analyses 
The classic paper for the small Grashof number problem is that of Mahony 
(1957). Considering both the sphere and circular cylinder cases, Mahony notes 
the futility of obtaining exact solutions for the outer region and, instead, seeks 
similarity solutions to (18)-( 20) (and to  the corresponding equations for the 
circular cylinder case) by assuming the existence of a vertical plume (wake) in 
this region. In  fact, the wake region corresponds to a co-ordinate perturbation 
and is only valid for p* 9 1 (i.e. P 9 vlU, = aG-4); hence, as noted by Mahony, 
it is impossible to match the wake solutions with the regular perturbation ex- 
pansions of the inner region. However, for the circular cylinder case, Mahony 
does patch the temperature of the wake with that of the inner region at  a parti- 



Mixed convection at small Reynolds and Grashof numbers 141 

cular point along the positive x-axis, obtaining the qualitative result that, in the 
inner region, 9 - (t,-t,)[l+h(G)logr] (rfixed, G+O), 

where h ( G )  = O(l/log G ) .  This result is completely analogous to that obtained 
in the corresponding small Reynolds number forced convection problem, the 
inner temperature expansion then being (cf. Kassoy 1967 or Hieber & Gebhart 
1968): 

where R = aU,/v, the Reynolds number (U, being the magnitude of the uniform 
stream). Although (23) and (24) are based upon pure conduction in the inner 
region (as is evidenced by ‘logy’), the G, R dependent coefficients in (23), (24) 
indicate that the inner temperature distribution is still dependent upon thermal 
convection; this dependence arises from matching considerations, indicating 
that the inner thermal field is ‘induced’ by the velocity field in the outer region 
(the inner temperature distribution being uniform when G, R = 0). This similar 
structure between the natural and forced convection from a circular cylinder 
leads one to suspect an analogous similarity for the sphere case. (Although it is 
realized that the circular cylinder case is probably of more practical (and even 
theoretical) interest, the present analysis is primarily concerned with the sphere 
since, as indicated below, the expansion technique employed in $2  is non- 
applicable to the circular cylinder case.) 

Recently, Fendell (1968) has treated the small Grashof number problem for the 
sphere, approximating the equations in the outer region with Oseen’s equation. 
The magnitude of the hypothetical uniform stream is based upon the co-ordinate 
perturbation solution, the latter indicating a constant velocity along the positive 
x-axis which is proportional to J(gp(t, - t,) a ) ,  the constant of proportionality 
being a function of the Prandtl number (which, as seen from (15) and (21), is 
4 2  when CT = 1). A t  best, such a procedure can be expected to yield qualitative 
information. In particular, Fendell finds that the velocity in the inner region 
is of order (v/a)G$ rather than (v/a)G. 

2. The mixed convection problem 
In  the present section, the physical situation differs from that of $1 in the 

one respect that the undisturbed fluid is now moving a t  speed U, with respect 
to the sphere. For simplicity, the direction of this uniform stream is taken to be 
along the positive x-axis (opposite to the direction of gravity); in addition, the 
Prandtl number is assumed to be unity. 

The basic assumption of the current theory is that Oseen linearization about 
U, is valid in the outer region; this requires that the Reynolds number be small 
and that the gravity-induced velocity in the outer region be small with respect 
to U,. Since (as is found below) Oseen linearization leads to a gravity-induced 
velocity of order gp(t, - t,) alum, it follows that the present analysis is restricted 
to U, < U, with R < 1 or, more precisely, G = o(R2) as R+O. In effect, then, 
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the current theory is for the case in which the small Reynolds number forced 
convection flow is perturbed by gravity effects. 

One notes that implicit in the above argument is the assumption that the 
resulting gravity-induced velocity is bounded as ++a. That this is indeed 
the case can be readily verified as follows. Applying the Oseen linearization to the 
energy equation in the outer region (and noting that the leading term in this 
region must match the pure conduction temperature of the inner region), it 
follows that, to first approximation, the temperature distribution in the outer 
region is independent of gravity and is, indeed, merely that of the forced flow 
case. If one substitutes this known temperature distribution (equation (29) 
below) into the buoyancy term of the momentum equation and integrates the 
resulting force over a spherical volume of radius r, one finds the total buoyant 
force to be O( I?) for large I?; assuming this force is evidenced as a momentum flux 
in the paraboloidal wake, it follows that the gravity-induced velocity in the wake 
is O( 1) as I? -+ 00. (A similar calculation for the circular cylinder case results in a 
velocity of O( rg) as I’ + 00, indicating that the Oseen linearization breaks down 
far out in the wake, thus precluding application of the present theory to this 
case.) 

2.1. Outer region 

In  the outer (Oseen) region the characteristic length is now v/U, and the appro- 
priate non-dimensionalization is : 

G = um V(p,  8; R ;  €), 

f = ( t , - - t , ) ~ ( p , ~ ; R ; 4 ,  

@ = P m  U % S ( P ,  6 ;  R; €1, 
resulting in the equations (unit Prandtl number): 

v .v  = 0, (25) 

(V.V)V = -VP+V2V+(G/R3)Fi , ,  (26) 

( V .  V ) Y  = V V ,  (27) 

where p = P/(v/U,) and E = e(R;G), a function yet to be determined. The 
boundary conditions are that V be bounded and F vanish as p -+ co; additional 
conditions result from matching considerations in, the region p 3 0. 

It is convenient to employ superscripts ‘B” and ‘B’ to denote those quantities 
which arise solely from forced convection and those which depend upon the 
buoyancy effect. For example, 

v ( p ,  e; R; E )  = v q p ,  e; R)  + vqp, e; R ;  €1. 
Hence the expansion for V” corresponds to the limit: p fixed, G = 0, R+O, 
the well-known result being (cf. Kaplun & Lagerstrom 1957 or Proudman & 
Pearson 1957): 

where V r  is based upon the stream function (non-dimensionalized with respect 

Y=f’(p,B) = -+(I +cos8) (1-e-Ml--~osB)). 

V”(p, 8; B)  i ,  + RVf ( p ,  e)  + O(R2), 

to v2/U,): 
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In  the same limit (cf. Acrivos & Taylor 1962 or Rimmer 1968), 

F F ( ~ , o ; R )  w r ( p , e )  + R ~ F ; ( ~ , o )  + .. . , (28) 

where Ff ’ (p ,  e)  = (1/p)e-b(1-cos 8) (29) 

and F g ( p , e )  is expressible in terms of an infinite series (cf. appendix C). 
Invoking the basic assumption that VB is everywhere small with respect to 

i,, it follows immediately from (27) that the leading temperature term in the 
Oseen region is independent of gravity and is, indeed, RFT (this being the in- 
tegral which matches the pure conduction temperature distribution of the inner 
region). Substituting R F f  for F in (26) indicates that the leading gravity- 
induced velocity is O(G/R2).  Letting E E G/R2, it follows that the present analysis 
is based on the limit: E = of l), R + 0 (cf. appendix A for a schematic diagram of 
the structure of the resulting expansions). Hence, with 

it follows from the above that A,(R;s)  = E .  Collecting the terms of O(s)  in (26) 

(31) 
results in 

([a/ax]-VZ)VF+VYf = Ff’i,. 

The corresponding vorticity equation is 

where 

A particular solution of (32) is 

the irrotational term, p(l+cosB), being required in order that Yf vanish a t  
8 = 0 in addition to 6’ = n, assuring zero net mass flux through any surface 
enclosing the body. (Any complementary integral having the proper symmetry 
and corresponding to a bounded velocity at  infinity can be shown to be unmatch- 
able with respect to the inner region.) The irrotational flow in (33) is particularly 
interesting, the radial and angular velocities being, respectively, 

1 
Vg. ip  = -- 

P’  

(subscript ‘i’ indicates irrotational flow). It is seen that the angular velocity is 
singular along 8 = 0, the positive x-axis behaving as a line sink of strength 
47r per unit length. Hence, the radial inflow arising from (34) is absorbed along 
the positive x-axis. 
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In  considering the behaviour of V," for large p, it is evident from (33) that the 
rotational velocity is exponentially small except for the narrow paraboloidal 
(wake) region: 8 = O(p-h), p+co.  Applying this limit to (34)) (35) results in 

0 0 

(0 being the cylindrical radial co-ordinate, p sin O), indicating that, with respect 
to the irrotational flow field, the wake is a line sink. In the same limit, the be- 
haviour of the entire velocity is 

Vf N e-f@*ik + O(p-4) N e-Tai, + O(p-t), (37) 

where 7 = p4singO N +p*O. Hence, as previously indicated, the buoyancy 
effect induces a velocity of O( 1) in the wake region. This flow, (37), represents a 
mass flux of O(p) in the paraboloidal wake, thus necessitating the inflow, (36), 
from the irrotational region. 

For matching purposes, one expands (33) as p --f 0, obtaining 

Yf ( p ,  8) - ip2  sin2 8 - i p 3  sin2 O( 1 - cos 8) + O(p4). (38) 

Therefore, v1B i,+O(P) (p+ 01, 

indicating that, with respect to the inner region, Vf is a uniform stream in the 
positive x-direction. (Note: if t ,  < t,, then E < 0 and the direction of EV," is 
reversed.) 

Taking the divergence of (31) results in 

The particular solution of (39) which also satisfies (31) is 

the first term in (40) being required to balance the term (a/ax)Vg in (31). 

2.2. Inner region 

In  the inner (Stokes) region the appropriate non-dimensionalization is 

6 = U,v(r,O;R;E), 

= ( t ,  - tm) T(r, 8;  R;e), 

resulting in the equations: v . v  = 0, 

R(v. V)v = - V p  + V2v + (G/R)Ti,, (41) 

R(v.V)T = V2T. (42) 

The boundary conditions are that v(1,B;R;E) = 0 and T(1,O;R;e) = 1. Addi- 
tional conditions arise from matching considerations in the region r + co. 
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With regard to T, it is convenient to use the notation: 

T(r,  8; R ; s )  = To(r, 8 )  + TF(r,  8; R) + TB(r,  8; R ; s ) ,  

where To is the pure conduction temperature: 

145 

T,(r,B) = l / r .  

The well-known inner expansions for the forced convection flow (corresponding 
to r fixed, G = 0, R+ 0) are 

$"(r, - @i% 6) + O(R) ,  

TF(r ,8;R)  N RT,F(r,8)+O(R210gR), 

where the stream function has been non-dimensionalized with respect to a2Um 
and where $; (r,  8) = (+r2 - $r + tr-1) sin2 8, 

TF(r,8) = +(r-1- 1 ) + ( ~ - - % r - l + 3 r - 2 - 1 r - 3 ) ~ 0 ~ 8 .  s 8 

Since T B  must evidently vanish in the limit r fixed, E = o( l), R+ 0, it follows 
that the buoyancy force in the inner region is, to first approximation, due to To, 
an effect of O(G/R),  i.e. O(ER).  However, matching considerations based upon 
(30) and (38) indicate the presence of a velocity term of O(s) in the inner region. 
Hence, with 

$B(r,O;R;e) N C 6,(R;s)$Z(r,8) ( r  fixed, E = o( l ) ,  R-tO), 
n=l 

it follows that 6,(R,s) = E .  For convenience, one then sets a2(R;e) = ER. (It 
will be found that terms of 0(e2) are also present in the velocity field. Since the 
limiting process requires only that E vanish with R, it follows that the relative 
order of magnitude of ER to €2 is indeterminate; hence, one could just as readily 
choose 6,(R;s) = s2.) Matching considerations based upon (38) then indicate 
that, as r+m, @p(r,8)  N +rZsin28, (43) 

$F(r,8) N -&r3sin28(1-cos8). (44) 

D2$P = 0. (45) 

The governing equation for y?? is 

From (45), (43) and the conditions that $H vanish at 8 = 0 , ~  and have a 
double zero at  r = 1, it is seen that the problem for $? is identical to that for the 
leading term in $ F ;  hence, 

$p(r ,  8 )  = (&r2 - $r + tr - l )  sin28. 

Dz.$g = ( - 9r-2 + y r - 3  - #r-5) sin2 8 cos 8 + (sin2 8/r) ,  

(46) 

(47) 

The governing equation for $? is 

the first inhomogeneous term arising from the non-linear effect between $: 
and $?, the second arising from To. A particular integral of (47) is 

- 1r3 8 sin2 8 + ( - Qr2 + &r + &r-l) sin2 8 cos 8. (48) 
10 Fluid Mech. 38 
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The first term in (48) arises from the buoyancy term in (47) and is seen to match 
the leading term in (44), the second term in (44) corresponding to the comple- 
mentary integral of (47). From (44) and the conditions that $F vanish at 
0 = 0, n and have a double zero at  r = 1, it follows that 

@(r ,0 )  = [ -3r3+t -r -gr-1+h2(+r2-~r+fr- l ) ] s in2e  

-t- ( 3 7 3  - gr2 + &r - + + &rl) sin2 8 cos 8. (49) 

The value (A,) of the uniform stream in (49) remains to be determined via match- 
ing considerations with the velocity of O(ER) in the outer region. It is readily 
found that the pressures associated with (46) and (49) are, respectively, 

pp(r ,O) = -Qr-2Pl(cos0), (50) 

p,zR(r,fj) = ( - + - ~ r - 2 + ~ r - 4 - ~ r - 6 ) P O ( ~ o s e )  

+ [$+ ( + - # h 2 ) r - 2 ] P l ( ~ ~ ~ 0 )  + (&-2- 3r-3+~r-4-gr-6)P2(~os0) ,  2 (51) 

the constant term in (51), - +PQ(cos O), arising from matching requirements with 

2.3. Thermal field (outer region) 

From (28) and (30) it is seen that the leading thermal convection effect arising 
from buoyancy is (V?. V ) T F ,  an effect of O(eR). Hence, with 

(52) 

it  follows that @,,(R, E )  = ER, the governing equation for YF being obtained from 
the terms of O(eR) in (27): 

PRp,  0). 

Y B ( p , O ; R ; ~ )  - 2 On(R;~)TE(p,O) (p  fixed, E = o(l) ,  R+O), 
n= 1 

[ P - ~  + 4(3 + cos 0 ) ~ - ~ ]  e-p(l-cOs @. (53) (V2 - a/ a x ) r p  = [p-3 + p-21 e-$d-oos 0)  - 

Introducing the transformation 

F a ( p ,  0) = p(p, 8) e+pcose, 

results in (V2 - M P ,  0) = f(P,  01, (54) 

f (p ,  8 )  = [ P - ~  + P - ~ ]  e-pi2 - [p4 + 4(3 + cos O ) P - ~ ]  e-p*pcou8. (55) 

G(P,Pl) = -- ___ 
4= lP - ell ' 

where 

The Green's function corresponding to the operator in (54) is 
1 e-&IP-PlI 

and is expressible as 

where 

a, being the angle between the directions of p, pl, Yg denoting spherical har- 
manics, In+&, Kn+, modified Bessel functions and (p, e, #), (pl, e,, #,,) the co- 
ordinates of p, el, respectively. Making use of the expansions 

(56) e+PcosB = s (an + l)~(=/p)I,++(~p)Pn(cos 61, 
0 



results in 

where 

However, it is shown in appendix B that this logarithmic behaviour in to@) is 
cancelled by the summation of the additional terms in (59) and that, in fact, in 
the wake, 

F p  N p-l[log2 - 4 - y - log q2 - E1(y2)] e-va (q fixed, p -+ co), 

where q = @sin $8, E,(Q is the exponential integral function ( =Icm t-le-tdt) 
and y is Euler’s constant ( = 0.577.. .). 

On the other hand, as p -f 0, one has from (59) that 

= O ( l ) ,  t,(p) = O(p”-l) (n 2 1). 

Therefore, 9-?(p,@ - to(O)+t,(O)cos8+O(p) (p+O).  (60) 

Since cos8 is not a harmonic function (and, therefore, not a complementary 
integral of the energy equation in the Stokes region) it follows that only to(0) 
need be evaluated for matching purposes. Prom (59), 
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Expanding (61) for small p, noting that 
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W5) -logC-Y+5+0(C2) (5+0)’ 
results in t,(O) = 1-2log2. 

2.4. Thermal field (inner region) 

Representing the Stokes temperature distribution as 

TB(r,B;R;e) - C #,(R;e)TE(r,B) ( r  fixed, G = ofl) ,  R-tO), 
,= 1 

it follows from (52) and (60) that $l(R ; B )  = BR, the governing equation for Tf 
being obtained from the terms of O(eR) in (42): 

the inhomogeneous term arising from (v? . V)To. The general solution of (62) is 

Tp(r,O) = (g-~r- l -~r-3))Pl(cosO) + C (A,r,+BILr-”-l)P,(cosO). (63) 

V2TT = ( - r-2 + 4r-3 - &-5) )P1(~~~  O), (62) 

OD 

0 

Based upon (60), matching considerations indicate that 

A ,  = t , ( O )  = 1 - 2log2, A ,  = 0 (n b l), 

the remaining constants being determined from the boundary condition 

Tl”(1’O) = 0: B, = 21og2-1, B, = g, B, = o (n 2 2). 

As in the forced convection problem, it is possible at this point to determine 
another term in the inner temperature expansion without having to obtain 
additional terms in the outer expansion. One readily finds that the governing 
equation for the term of O(eR2) in T” involves inhomogeneous terms arising 
from (vf . V)TF and (v,”. V)TF, the latter giving rise to a particular integral 
which includes the function - log r .  In  the matching region, such a term behaves 
as eR2 log R. However, it can be readily shown that does not contain a term of 
0(eR2 log R)  since, if it  did, the governing equation for such a term would be the 
homogeneous Oseen energy equation, any solution of which, if vanishing at 
infinity, would be unmatchable with the inner expansion. Hence, it is required 
that T B  contains a term of O(cR2logR) which, in the matching region, 
cancels the behaviour arising from the -1ogr in the term of 0(eR2). Setting 
$2(R, E )  = eR2 log R, the governing equation for T,B is merely Laplace’s equa- 
tion. With the boundary condition Tg( l,@) = 0 and the matching requirement 
T.f(r, 8 )  - - 1 as r -+a, one obtains 

T f ( r , @ )  = - ( l - r - l ) .  (64) 

2.5. Higher-order velocity field (outer region) 

Setting A2(R;e)  = BR and A3(R;e) = e2, the resulting equations for Vf and Vf 
are, respectively, 
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Since YF and 9-f are expressible only in series form, V,B and V f  must be simi- 
larly expressed. For matching purposes, however, only the behaviour of these 
velocities as p -+ 0 is required; this is determined in appendix C by means of the 
fundamental solution of the Oseen momentum equation (cf. Lagerstrom 1964), 
the integrals having the following behaviour : 

Y f ( p ,  8) N - & sin2 8 - #p2 sin2 8 cos 0 + ip2 sin2 0 3 0.21 + C a, + O(p3), 
0 

(67 1 
(68) 

P-+O b+ m ,  

p-0 ( w ,  0 
Y f ( p ,  8) N ipZsin28 :log 2 - 2 + C b, + O(p3), 

where the constants 0.21 and ;log 2 - 2 arise from the inertial forces on the right- 
hand side of (65) and (66), respectively, the series Ca, arising from Y g  and Cb, 
from 9-P, the approximate values being (cf. appendix C) : 

m W 

2 a, z 0.74, C 6 ,  z - 0.29. 
0 0 

2.6. Higher-order velocity field (inner region) 

From (67) it follows immediately that (cf. equation (49)) 

A, = #+ 0.21 +Can M 1.33, (69) 

thus completing the determination of $f(r,O). The behaviour of Yf in (68) 
indicates the presence of a term of O(e2) in the inner region. Setting S3(R;e)  = e2, 
the governing equation for ?,@ is the homogeneous Stokes equation. From (68) 
and the symmetry and surface conditions, it follows that 

$f(r ,6)  = h3(~r2-Qr+ar-l)sin28, 

A, = #log 2 - 2 + Cb, M - 0.56. where 

The pressure associated with (70) is readily found to be 

pf(r,0) = -&r-2P1(cos8). (72) 

In a manner analogous to that which led to q52Tf, it is found that $B contains 
the term g e R 2 r 2  log r sin2 0 (arising from the non-linear effects between v?, 
vf and between vf, v,") and, setting 6,(R;s) = eR210gR, one finds: 

B - 2 7  1 2  - m(zr - & - 4r-l) sin2 8, 

p4" = - $+-". (cos 8).  

(73) 

(74) 

2.7. Drag and heat transfer results 

In  terms of the drag coefficient, CD = drag/(na2$pm U z ) ,  one has that 

CD N CF(R)+CB(R;e) ( E  = ~ ( l ) ,  R+O), 

where C" is given by Proudman & Pearson (1957) and CB is obtainable from the 
present analysis : 

(75) 
12 
R 

CF = -[1+#R+&R2logR+O(R2)], 
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12 
R 

C B  = - [ E + ( A ~ - ~ ) E R + A ~ E ~ + ~ E R ~ ~ ~ ~ R + O ( E R ~ ) + O ( E ~ R ) + O ( ~ ) ] ,  (76) 

where A, x 1.33, A, M -0.56 and e = G/R2 (G, R being based upon the sphere 
radius and the result in (76) being for unit Prandtl number). The results in (75 ) ,  
(76) are indicated in figure 1, the negative values of G corresponding to t, < t,. 

0.001 0-004 00 1 0.04 0.10 0.40 1 .oo 
R 

FIGURE 1. Drag coefficient for sphere in mixed convection flow (based upon 
equations (75) and (76)).  Curves correspond to  constant values of G. 

Similarly, for the Nusselt number, N = &/(4nka(t, - t m ) ) ,  one has that 

N N l + N F ( R ) + N B ( R ; E )  ( E  = ~ ( l ) ,  R+O), 
where the first term corresponds to pure thermal conduction, N F  is given by 
Rimmer (1968) and N B  is obtainable from the current theory (unit Prandtl 
number) : 

NF = QR + iR'10g R +  (log 2 + +~-#)R '+&R~log  R + O(R3), (77) 

N B  = (210g2- ~ ) E R + E R ~ ~ ~ ~ R + O ( E R ~ ) + O ( E ~ R ) ,  ( 7 8 )  
where y is Euler's constant, the coefficient of the O(R2) term in ( 7 7 )  is a corrected 
value and the term of O(R310gR) in (77) ,  although not appearing in Rimmer's 
result, has been added on the basis of the analysis of Acrivos & Taylor (1962). 
One notes that N B  is second order. In addition, for R x 0.1, the second term in 
(78) is comparable but of opposite sign to the first term, indicating that the 
applicability of (78) is for very small values of R. 

2.8 .  Some observations 

From the leading term in $B, e$f(r,@), it is seen that, with respect to the inner 
region, the primary effect of buoyancy is to cause the apparent magnitude of 
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the uniform stream to be (1 +€)Urn. That is, the leading gravity effect in the 
inner region does not arise from the buoyant force in that region but rather is 
induced by the buoyancy effect of the outer region. As a result, the governing 
equation for $1” is the homogeneous Stokes equation, indicating that, even for 
the gravity-induced velocity field, diffusion is the predominant effect in the 
inner region. 

As is implied in figure 1, the results of the present theory are also applicable 
if t, < t ,  (G  negative). In  such a case, the buoyancy effect opposes the forced 
convection (as is seen in figure 1); for example, E V ~  (e negative) represents flow 
being drawn down axially through the wake and being pushed out radially in 
the irrotational region. For the case in which gravity acts in the same direction 
as the uniform stream, the present results are applicable provided 8 is everywhere 
replaced by - 8. 

Consideration of global effects arising from (31) leads to some interesting 
results. Employing a spherical control volume (V,) of radius I?, the individual 
terms (based upon (29), (33), (40)) in the x-component of (31) can be readily 
integrated over V,. In  the limit of large I?, such integrations indicate that the 
(x-component) momentum of the rotational flow in the wake is 

(times epmv2), the 4nr being due to the buoyancy force and the - 16n arising 
from equal contributions from the buoyancy force, the viscous shear in the wake, 
the pressure associated with the rotational velocity field and the viscous drag 
resulting from the irrotational velocity field (the x-component of Vg being 
l/p). The fact that the last three effects are non-vanishing as I’ + 00 is indicative 
of a fundamental difference in character between natural and forced flow 
phenomena. In  a word, as p-+co, the momentum effects associated with VB 
exceed the corresponding effects of the forced flow field by O(p). As a result, for 
large p, the disturbance velocity field is characterized by V B .  

One notes that a closed-form solution for Yp(p, 0) is peculiar to the case CT = 1. 
However, for 0- + 1 the qualitative description should be the same as in the 
present case; that is, the gravity-induced velocity field is still of magnitude 
[g/3(t, - t ,  )a]/U, with the wake region being characterized by a non-vanishing 
but bounded velocity and the flow in the inner region being diffusion-dominated. 
In  fact, the behaviour of the outer velocity field in the matching region can be 
readily determined by employing the fundamental solution rii of the Oseen 
momentum equation (cf. appendix C). Integrating rll (p, 6)Ff ’ (p ,  6) over physical 
space (noting that, for CT arbitrary, 9 r  = ( l / p ) e - ~ ~ ~ ~ l - c o ~ o ~ )  one readily finds 
that, for CT =t= 1, Vf behaves as a uniform stream of magnitude loga/(0-- 1) 
as p -+ 0. Hence, defining y1(cr) such that 

4 n r - i 6 n + ~ ( i / r )  

it is noted that y1 is a continuous monotonically decreasing positive function 
(‘decreasing) is a direct consequence of the fact that the thermal field contracts 
as CT increases) and that, for Q arbitrary, 

V B  N yl(a)Ei,, p+O. 
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Finally, it should be reiterated that the results of the present analysis are 
based upon the assumptions that viscous dissipation is negligible, that the 
stratification of the undisturbed fluid can be neglected except with regard to 
the pressure gradient and that the fluid density is uniform except as it relates 
the density to the buoyancy effect (then taken to be only a function of tempera- 
ture). For an ideal gas, these assumptions are equivalent to requiring that the 
parameters A, E M ~ / ( A R ) ~  and Hz/(AB) be arbitrarily small (where A = (t, - t ,  )Itm 
and M = Mach number). 

3. Conjectures: the natural convection problem 
Based upon the results of the preceding sections, it seems plausible to assume 

that Vz also behaves as a uniform stream in the matching region. That is, one 
expects that 

(79) 

Pl(u) being a constant (for given a) whose evaluation is dependent upon the 
solving of (18)-(20). From (79) it then follows that the leading term in v*(r, 8; G) 
is O(G4) rather than O(G). Denoting this term by G*v$(r,8), one finds from (8) 
and (10) that 

vzv: = vp; 

and, therefore, employing (79) and the symmetry and surface boundary con- 
ditions, one obtains 

$:(r,8) = P1(u)(&r2-$r+@-1) sin28, (80) 

(81) 

It immediately follows that the leading thermal convection effect in the inner 
region is O(G4). Hence, setting #;(a) = G*, one obtains, in a manner analogous 
to that which led to T,B, that 

T;.*(r, 8) = -P2(u)(l - r-l)  + a;Bl ((r)(# - $r--l+ %-2-&r-3)Pl (~~~ 8 O ) ,  (82) 

where p2 (a), a constant (for given u), is defined in terms of the outer temperature 
field : 

pg(r, 8) = - $pl (u)r2P1 (cos 8). 

m P * , e )  ( l / P * )  -Pz(a) +wl (u )~ l ( cos8 )  +O(P*) (P* - tO) .  (83) 

Based upon (80) and (81) the drag coefficient, C* = drag/(m2#pm U;), is 

Similarly, from (82) one finds the Nusselt number to be: 

N* N l + P z ( u ) G i  ( G - t O ) .  (85) 
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Appendix A. Structure of expansions 

i, + RVf + O(R2) + eVp + eRVf + e2Vf + O(eR2 log R) 
vr + O(R) + EV? + eRvf + e2vF + O(eR210g R) 

outer, 

inner, 

1 + R2Ff + O(R310g R) +eRFp + O(eR210g R) 

RTT+ O(R210g R) + eRTf + O(eR210g R) 

outer, 

inner. 

{ 
t-t, N (t,-t,) (RZF 

8 N u, 

T 

The causal relations between these terms is indicated below, the effects of 
buoyancy, convection and matching being denoted, respectively, by 33, V, A. 

Aq9- f )  + Vf , 

dl (V?) -+ v?, 
V(Vp,9?)+9-p,  

B(9-f)  + U( vr, V?) + A ( V P )  -+ V?, 

33‘(9-?) + %(V?,V,”) -+ V?, 

dl(Vf)+Vf.  

V(v,”, To) +Jl(F?) + T,”, 

33(TO)+U(vf,v?) + d ( V f ) + v f ,  

Appendix B. Behaviour of 9-p for large p 

Examining the governing equation for Fp, (53), one finds that integration 
of the inhomogeneous term over the control volume V, results in the value 
%+O(I’-l); a similar integration of the left-hand side results in (employing 
the divergence theorem, noting that Yp = O( 1)  as p -+ 0) 

S, being the surface of V,. As + CQ, the only contribution in (B 1) is due to the 
wake region wherein a/@ = O(p-l) ,  cos 0 N 1 + O(p-l), indicating the first term 
in (B 1 )  is negligible in comparison with the second; hence one obtains the con- 
dition: 

“1” dSwake = - 27~, (B 2) /P 
Xwake being the surface area common to S, and the wake. (Physically, (B2) 
represents the fact that, in the wake, the thermal convection of Ff by the uni- 
form stream is cancelled by that due to (Vp.  0)Fr (the inhomogeneous term 
in (54)); this is necessary since these are the only two effects corresponding to a 
heat transfer rate of order eka(t,,, - t, ), the heat transfer from the body being of 
order eRka(t,-t,)). Were 9-f of O(logp/p) in the wake, the left-hand side of 
(B 2) would be of O(1og I?) ; therefore, in order that (B 2 )  be satisfied it would be 
necessary that the &integration over Swake of such a term be zero. However, 
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as indicated in $2.3, egpcoseto(p) is the only term in the series expansion of Ff, 
equation (59), which is O(logp/p) in the wake; one readily finds from (61) that the 
integration of e*pcosetO(p) over Xwake results in the value - 4nlog r+O( l ) .  On 
the basisof (B 2), then, it is concluded that the O(logp/p) behaviour of e9Pcoseto(p) 
in the wake is cancelled by the cumulative effect of the remaining terms, n z 1, 
in (59); that is, 

(Since, for n z 1, t,(p) = O(e-g,/p) as p-fco, it follows that the series (59) is 
slowly convergent in the wake region.) As a result, in the wake, F p  = O(p-1). 
(This, in turn, assures that V$, the velocity induced by 9-p) is bounded.) 

In a word, the series expansion (59) is a poor means of describing F F  in the 
wake region. A direct means of determining the latter behaviour is via the applica- 
tion of the limiting process: 0 = O(p-3)) p+co to the governing equation, (53). 
The resulting problem is made determinate by employing the global constraint, 
(B 2)) and making use of the fact that, as p+m, Ff is exponentially small except 
in the wake, wherein it is O(p-l) .  

In  applying a co-ordinate perturbation expansion to (53), it is convenient to 
follow the standard procedure of introducing cylindrical parabolic co-ordinates 
(g, 7,$)  where = p* cos 40, 7 = p i  sin +0 and $ is the azimuthal angular co- 
ordinate. Therefore, 

In the wake, corresponding to the limit: 7 fixed, t; --f co, one then has 

(‘a/ac = O(f[-’)’ follows directly from the algebraic dependence of the flow 
quantities upon c, a basic characteristic of the wake). LettingFf(p,O) = H(( ,q )  
and applying the above limiting process, equation (53) becomes (cos0 N 1, 
sin 0 N 2715): 

Making use of the O(p-l)  behaviour of Fp, one sets H(6,q) = (-2h(7), resulting 
in : 

-+ 27+- -+4 h = 4(1-2e-VZ)e-sa. 
[:2 ( x 7  1 

Requiring that h(7)  be exponentially small as 7 -f 00 and imposing condition 
(B 2) which, in current terms, is 

r m  

one finds that h(7) = [log 2 - 4 - y - log q2 - E,(y2)]e-Va, 

the result being shown in figure 2. 
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Comparison with expansion (59) is instructive. Noting that Inn++, K,+$ are 
positive functions, it follows immediately from (58) and (59) that tn(p) is positive 
for n 2 1. On the other hand, from (61) it is found that t,(p) is a negative function. 
Hence, it is seen from figure 2 that, towards the edge of the wake, (59) is pre- 
dominated by e4Pooseto(p) whereas, along the axis, the higher-order terms in (59) 
prevail. This is explainable by the fact that, for 8 + 0, the sign of Pn(cos8) 
varies with n and the terms in (59) corresponding to n B 1 tend to cancel one 
another; a t  8 = 0, P,(cos 8) = 1 for any n and the effect of the higher-order terms 
is additive. It is therefore concluded that, outside the wake (e.g. 8 fixed + 0 and 
p + a), 9-p = O(p-1 logpe-4p(1-coe@) whereas, within the wake, 9-f = O(p-1). 

0 2  

0 1  

00 - 
P z 
- 0.1 

- 0.2 

I I I I I I I I 

2 5  2.0 1.5 10 0.5 0.0 0.5 10 1.5 2.0 2 5  

?1 
FIGURE 2. Behaviour of 5: in wake region (based upon equation (B 3)).  

Appendix C. Higher-order velocity field 
I n  dealing with the fundamental solution of the three-dimensional Oseen 

momentum equation, it is convenient to introduce Cartesian co-ordinates 
(x1,x2,x3) with the x1 and x2 axes corresponding, respectively, to 8 = 0 and 
q5 = 0. Defining rtj(x) to be the i-component of the induced velocity at  the 
origin arising from a unit force acting a t  x and directed in the j-direction, one 
has (Lagerstrom 1964): 

(aij being the Kronecker delta function). Therefore, if F(x) denotes the inhomo- 
geneous term in the Oseen momentum equation, there exists a particular solu- 
tion for the velocity having the following behaviour a t  the origin: 

x(x = 0) = //bij(xr)$(x’) d+, (C2) 

the integral being over all space. 
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Employing (C 1) and (C2) and noting that the inhomogeneous terms in equa- 
tions (65) and (66) are independent of q5, it is readily found that, for these cases, 
the induced velocity at the origin has zero components in the x2 and x3 directions. 

Now, from (C 1) : 

, 

Hence, letting Fz denote the component of F in the (z, direction (cylindrical 
radial co-ordinate) and noting, as above, that Fzis independent of$, one has that 

F2 = 3’; (p ,  0) cos q5, F3 = F-(p, 0) sin $, 
resulting in r12F2+ r13F3 = r (p?e)F~(p~6)*  

Based on the above, it follows that there exist particular solutions (subscript 
‘p’) of (65), (66) having the following behaviours at p = 0: 

where 

91 E / o m / n / a T  [ - (Vf . V ) u r  - (VF. V)uf + F F ]  rll(p,8)p2sin Odq5 dedp, 

9, = som In j a r  [ - (V?. V)wr - (Vr . V)wf] r(p, B)p2 sin 6 dq5 dB dp, 

4, = ~om/n/an[-(Vf.V)uf+F~]rll(p,0)p2sinOdq5dOdp, 0 0  

9, = / o m ~ ~ ~ o z n [ -  (Vf.V)w,B] ~(p,6)p2sin8dq5dOdp, 

0 0  

0 0  

with u? E V r . i x ,  wf = Vf.i;;, etc. In  evaluating 9l it is first necessary to 
determine Fg. This is readily done by noting that the governing equation for 
Zf’ is of the same form as that for 9-p) equation (53 ) ,  the inhomogeneous term 
in the former case arising from (VF . V ) F r ;  the boundary conditions are that 
9: vanish as p+oo and that, as p-f 0, Yg - 4p-l (in order to match the term 
+r-1 in TF). In a manner analogous to that leading to equation (59), one finds 

that m 

0 
Y r ( p ,  0) = eboose c q,(p)P,(cos e), 
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where 

+ (&p4 + 2p-3) e-+ I,( +p) + ( - 4p-4 - +p-3 - &p-z - Ap-1) e-p l 0 ( p )  

+ ( - p-4 - &I-3 + $p+) e-pll(p) + ( - $p-4 - 4p-3)e-P I&) 
+ ( -p-4 -p-3 - 1 -2 + &p-1) e-p + (4p-4 + Q-3 + 11 -2 + 9 -1 e-%pI (1 

8p 32p 64P ) 0 Zp) 
+ (p-4 + gp-3 + 1 4p -2 ) e-$Pll(&p) + (W4 + &T~)  e-~p12(&p)] dp 

E -0.34, 

(C 10) 

In@) being the modified Bessel function of the first kind and q,(p) being de- 
fined in (C7),  I',(p) in (CS) and t,(p) in (59). In  determining C,, recourse to a 
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computer is necessitated, resulting in the indicated value. Finally, the values of 
a,, b, can be obtained in closed form, particular values being 

a 0 - - 2 3 2  M 0.9688, a, = -& M - 0-2188, a2 = @-log 2 w - 0-0109, 

b, = 4 log 2 - 1 M - 0.6534, b, = 3 - Gc log 2 M 0.2398, 

b - 311- '4 log 2 M 0.0688. 2 - 168 
Additional constants have been obtained (more readily) via quadrature: 

a3 E -0-0016, b, M 0.0243, b, M 0.0111, b, M 0.0061. 

These values are sufficient to indicate that 

m m 

0 0 
I: a, M 0.74, I: b, M - 0.29. 

(The slow convergence of (59) in the wake region is apparently reflected in the 
series Zb,: for any n, b, arises directly from t, via the buoyancy term in (66)). 

Matching considerations indicate that Y g ( p ,  8) must match the Stokeslet 
in @f(r ,  0). Hence, the required complementary integral in Y f ( p ,  0) is 

YE@, 6 )  = - $( 1 + cos 8) (1 - e-~p(l-cO~B)), 

since, as p+ 0, one then has that 

Y&, 8) N - $p sin2 8 +&p2sin28( 1 - cos 8 )  + O(p3). (C11) 

In  addition, the terms of O(p2) in Y f ( p ,  8) must match the corresponding terms 
of @:(T,#). It is noted, however, that the coefficient of the r2sin28cos8 term 
in @g(r,O), equation (49), is -8  whereas the coefficient of the corresponding 
term in (C 11) is - &. However, since the stream function p2 sin2 8 cos 0 corres- 
ponds to an x-component velocity of C O S ~  8 + cos 8, a term which is undefined 
at  p = 0,  it  follows that the method employed in obtaining (C 5) is incapable of 
discerning the presence of such a term in Vf. Therefore, the stream function 
corresponding to (C 5) is actually Yg (p, 8) where 

No such complications arise in the case of VF, it  being evident that YF must 
behave as a uniform stream as p -+ 0 in order to match the term of O(e2) in the 
inner expansion, the governing equation for the latter being the homogeneous 
Stokes equation. 
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